
7 AD-A142 964 THE ARITHMETIC
OF DIFFERENTIATION(U)

WISCONSINUNrV-MADISON MATHEMATICS RESEARCH CENTER LB RAL

UNCLASSI1IED MAY 84 MRC-TSR-2688 DAAG29-8D C 0041 F 2

I IhEmmhEELIo

I2M iiii-
36-2

~ 112.2

liii,111111.8

11111 _L 51.4 1 .

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS-1963-A

iMC Technical Sumary Report #2688

ME3 ARITHMETIC OF DIFFERENTIATION

L.BIRl

Mathematics Research Center
University of Wisconsin-Madison
610 Walnut Street
Madison,, Wisconsin 53705

May 1984

(Received May 7, 1984)

C)

LL. Approved for public release
Distribution unlimited o

O Sponsored by F
U. S. Army Research Office JL1 4
P. 0. Box 12211S JL1094
Research Triangle Park
North Carolina 27709 A

84 06 '?Q 021

f, Esol on Fo r

UNIVERSITY OF WISCONSIN-MADISON "FAiI
MATHEMATICS RESEARCH CENTER TAB

THE ARITHMETIC OF DIFFERENTIATION

L. B. Rall tr

Technical Summary Report #2688
May 1984

ABSTRACT

This report describes automatic differentiation, which is neither

symbolic nor approximate, for single functions of one real variable. The

rules of evaluation and differentiation are combined into an ordered-pair

arithmetic similar to complex arithmetic, but slightly simpler. Evaluation of

the formula for a function in this arithmetic yields both the values of the

function and its derivative, without a formula for the derivative of the

function, and without numerical approximation, since this arithmetic is based

on the well-known rules for differentiation. The properties of this

arithmetic are examined, and illustrated by simple examples. Subroutines are

given for differentiation arithmetic both on a hand-held programmable

calculator, and in the microcomputer language Pascal-SC. An application of

this arithmetic to the solution of equations by Newton's method is given,

using a Pascal-SC program.

AMS (MOS) Subject Classifications: 26-01, 26-04, 26A06, 65H05, 68B99

Key Words: Automatic differentiation

Work Unit Number 3 (Numerical Analysis and Scientific Computing)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041

Il

SIGNIFICANCE AND EXPLANATION

Most people think that evaluation of derivatives on a computer has to be

either symbolic or numerical, that is, approximate. By combining the rules of

differentiation with the rules for evaluation, however, it is possible to

perform differentiation using only the formula (or subroutine) for the

function involved. It is not necessary to produce a formula for the

derivative of the function to obtain the exact value of its derivative for any

given values of its arguments. The way this method of automatic

differentiation works is not immediately obvious, because everyone is taught

in school that the first step in evaluating the derivative of a function is to

derive the formula for the derivative, and the only alternative to this is to

approximate the derivative by a difference quotient. However, the definition

of the dervative and the rules derived from it actually define values of the

derivative, not formulas, so that these rules can be used to define what is

called differentiation arithmetic here for single real-valued functions of one

real variable. This is an ordered-pair arithmetic, similar to complex

arithmetic but actually a little simpler. When the formula for the function

is evaluated in this arithmetic, the value of the function and its derivative

are obtained automatically, without symbolics and without approximations.

Differentiation arithmetic is easy to program for hand-held calculators as

well as computers, and some examples are given.

Automatic differentiation was developed first in the general setting of

functions of several variables, and for Taylor series expansions of functions

of single variables. The special case considered here was presented to the

Wisconsin Section of the Mathematical Association of America in the hope that

this simple setting would help to explain away some of the current

misconceptions about differentiation on the computer. Automatic

differentiation is as accurate as symbolic differentiation, which requires a

lot of software, but much faster. It is also suitable for parallel

computation. Numerical differentiation gives only approximate answers, while

automatic differentiation gives correct results at about the same speed or

even faster.

The responsibility for the wording and views expressed in this descriptive
sunmmary lies with MRC, and not with the author of this report.

THE ARITHMETIC OF DIFFERENTIATION

L. B. Rall

I. A simple calculus problem. Traditional ways of thinking and doing things exert a

strong hold in mathematics, as well as in other human endeavors. For example, generations

of students were taught to solve linear systems of equations by using determinants and

Cramer's rule 12]. It was not until people actually tried solving linear system using

desk calculators and later computers that more efficient methods based on Gaussian

elimination came into general use (7], (3]. Even today, it is disconcerting to encounter

people who think that the "only way" to solve linear systems is by the Cramer's rule they

learned in school.

Calculus is another subject with a long, rich history and strong traditions. As an

example of a traditional approach to a simple problem in calculus, suppose you are given a

function defined by a formula, say

F x X
2 + 2X - 3 (X -)(x + 3)

(1.1) ?CX) . +2 - X1.X
X+2 X+2

and you want to find the value of the derivative F'(X) for a given value of X. Most people

have been taught to solve this problem by first deriving a formula for the derivative,

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041

(1.2) CI) -X 2 + 4X + 7 + 3
(X + 2) n (+2)'

and then using the usual rules of arithmetic to evaluate F'(X). This method, like Cramer's

rule, is theoretically correct, and not complicated for this example. However, this is not

the only way to calculate the values of derivatives. It turns out that it is possible to

obtain both the values F(X) and F'(X) simply by evaluating the formula for F(I) using a

different kind of arithmetic, called differeutiatiam aritb€ic. A formula for F'(X) is

not required, contrary to common belief. Differentiation arithmetic is an ordei-pair

arithmetic, similar to complex arithmetic. The rules for this arithmetic will be defined

later; first, it is important to analyze the key idea of function evaluation in ordinary

arithmetics, and see what this process has in common with differentiation.

2. Nvaluation of functions. The usual way to evaluate a rational function, (1.1) for

example, is to break it down into a sequence of additions, subtractions, multiplications,

and divisions, and then apply the rules for arithmetic to each. Given a simple formula,

this is often done instinctively, without much thought. If a hand-held calculator is being

used, however, it is useful to think out the sequence of arithmetic operations being used,

and perhaps write them down, especially if a complicated formula is being evaluated. Such

a sequence is called a cod list for F(X) [101, [12). For example, evaluation of (1.1) can

be done in the following steps:

T1 :X - 1;

T2 := X + 3;

(2.1) T3 : T1-T2;

T4 : X + 21

F(X) : T3/T4,

or some other equivalent sequence. The intermediate quantities T1,T2,T3,T4 are each the

result of a single arithmetic operation.

Another way to visualize the evaluation of F(x) is by means of a Kantorovich graph

-2-

151, 1111, 112), shown in Figure 2.1.

The Kantorovich graph is a directed graph in which information (numerical values in

this case) flows along edges from top to bottom, and the indicated arithmetic operations

are performed at the nodes. This graph shows which operations smt be performed before

others can be done, or, from another point of view, the operations which can be performed

independently or in parallel. Various code lists equivalent to (2.1) can be read off the

graph. In the early days of computing, the tedious process of preparation of code lists to

evaluate functions was done by the programmer. Modern computer languages now contain

formula translators, which automatically analyze formulas such as (1.1) by a fixed

algorithm and produce sequences of instructions similar to (2.1) for the machine to

execute.

T3

Figure 2.1. A Kantorovich Graph for the Function (1.1).

-3-

e

Once the code list (2.1) has been formed, evaluation of F(X) for some value of X, say

X = 3, is a trivial matter; 3 is substituted for X and the indicated sequence of operations

are performed:

T1 : 3 - 1 - 2;

T2 : 3 + 3 - 6;

(2.2) T3 :- 2.6 - 12;

T4 : 3 + 2 " 5;

P(3) 12/5 2.4

Of course, code lists are not the only way to express evaluation of a function. Another

popular method is to express F(X) in "reverse Polish" notation, for example, by

(2.3) F(X) :- X+1-Xt3+-X+2+/;

where + represents "entering" the preceding value, or "pushing" it onto a stack.

3. Differentiation of functions. Elementary differential calculus is based on the

definition

(31 .(x + AX) - F(x)(3.1) FIM) " AX + 0 AX

However, this definition is seldom used for actual differentiation of a function such as

(1.1). Instead, it is used to derive rules for differentiation of sums, differences,

products, quotients, and other functions encountered in mathematical analysis. Once these

rules have been established, differentiation proceeds in much the same way as function

evaluation: The function is expressed as a sequence of additions, subtractions,

multiplications, divisions, etc., and the appropriate rules are applied. This technique is

valid as a consequence of the chain rule, which is derived from the definition (3.1). To

see how this works for our example, apply the rules for differentiation to the code list

-4-

(2.1):

TI' :-I

T21 : 1s

(3.2) T3 : TI.T2 + T2*Tl'g

T4' :- 11

Fo(X) : (T4"T3' - T3"T4')/T4
2
.

This, along with (2.2), gives all the information needed to evaluate F'(3). The steps are:

Ti' :- 15

T2 1;

(3.3) T3' : 2.1 + 6"1 = Si

T4' :- 1:

F'(3) : (5"8 - 12.1)/52 - 28/25 - 1.12

This gives the correct value of F'(3) without the use of a formula for F'(X). This process

is called automatic differentiation 111], (12] in order to distinguish it from smbolic

differentiation, which produces a formula for the derivative. It is also important to note

that automatic differentiation is not "numerical differentiation", which yields only an

approximate value for F'(X), for example, by use of the difference quotient

(3.4) a- (x + Ax) - F(X)

(34 AX

for a fixed value of AX.

As presented above, the use of automatic differentiation requires the formation of the

additional code list (3.2), and evaluation of FV(X) by (3.3) depends on values obtained in

the evaluation (2.2) of F(X). The formation of an extra code list is eliminated, and the

evaluation of F(X) and F'(X) are combined by the use of differentiation arithmetic applied

~-5-

I l l i m s i , a . . .,. , __, i i l m i il l i ll n i i
.

V

to the original code list (2.1).

4. Differentiation arithmetic. The idea behind differentiation arithmetic is t

familiar one of an ordered-pair arithmetic. Here, arithmetic operations are defined in the

set 92 - 8 x 8 of pairs of elements of a set 8 componentwise in terms of already

established operations in 5. Some examplea, with 8 - K, the set of integers, or 8 = a. the

set of real numbers, are:

(i) rational arithmetic: X - p/q, p,q E K;

(ii) complex arithmetic: X - (x,y) x + iy, x,y E R;

(iii) interval arithmetic: X - (a,b] - (x I a 4 x 4 b, a,b,x E R, a C b).

The rules of rational and complex arithmetic are well-known, interval arithmetic is

described in [1], 18], or [9]. In any of these arithmetics, the function F(X) given by

(1.1) can be evaluated by using the code list (2.1), starting with a different type of

element X, and using different rules of arithmetic than in the evaluation of F(X) for a

real number X - x E a.

The bsic elements for differentiation arithmetic are pairs of real numbers

F (f,f'), G - (g,g'), ... E D _ =
2 .

For the time being, the prime ' is to be regarded only as a marker to distinguish the

second element of a pair. The tas of differentiation arithmetic are as follows:

10. AddLitiom

(4.1) F + G - (ff') + (g,q') - (f + g, f, + g');

2e
.

ubtraction

(4.2) F - G (f,f') - (g,g) - (f - g, f' - g')1

3 . MItiplicatiao

(4.3) F • G - (f,f') (g,g') - (f.g, f.g' + g.f');

40. Division

(4.4) r / G - (ff') / (g,g,) - (f/g, g'f" f), g 0.
g

Examination of these rules shows their simple structure: The first components of the

-6-

,

results are formed by the rule for evaluation in real arithmetic, and the second by the

corresponding rule for differentiation, assuming the first components of the operands

represent function values, and the second components are values of their derivatives. Two

further rules of differentiation are needed in order to represent special quantities in

differentiation arithmetic. First, if x denotes a variable, the basic rule is

(4.5) d = ,
dx

from which it follows that the independent variable X in differentiation arithmetic is

represented by a pair

(4.6) X = (x,1),

where x is the value of the independent variable X. Second, if c denotes a constant, then

dc
(4.7) do= 0,

which means that constants in differentiation arithmetic are represented by pairs

(4.8) C - (c,0),

where c is again the value of the constant C.

Evaluation of a formula for a rational function F in differentiation arithmetic should

give the correct values for both F(X) and F'(X), because this kind of function can be

expressed as a sequence of arithmetic operations and the chain rule holds. To see how

differentiation arithmetic works, try it out on the example (1.1), following the code list

(2.1). Here, it is convenient to identify the literal constants appearing in (2.1) with

pairs of the form (4.8). The resulting sAmd arithmetic (similar to multiplication of

vectors by scalars) is less cumbersome than conversion of constants to the form (4.8).

-7-

i I,

With X - (3,1), (2.1) becomes

TI : (3,1) - 1 - (2,1)1

T2 := (3,1) + 3 = (6,1);

(4.9) T3 : (2,1)-(6,1) - (2"6, 2"1 + 6"1) (12,8);

T4 : (3,1) + 2 = (5,1)s

F((3,1)) (12,8)/(5,1) - (12/5, (5"8 - 12.1)/52) (12/5, 28/25);

so that

(4.10) F(3) 12/5 - 2.4, F'(3) 28/25 = 1.12

for the real-valued function F(X) defined by (1.1).

The rules of differentiation arithmetic are actually simpler than the rules for

complex arithmetic, and give the correct values for rational functions and their

derivatives without symbolic manipulations or resort to numerical approximations.

Forthermore, differentiation arithmetic is easy to program for hand-held programmable

calculators (see Appendix A) or computers [6], [12), [13] (see Appendix 8).

5. Properties of differentiation arithmetic. The reason why diffentiation arithmetic

works when applied to rational functions is based on the fact that it has certain key

properties in common with real and complex arithmetic. Differentiation arithmetic takes

place in the mathematical system D consisting of the elements of R2 with the operations

(4.1)-(4.4). It is easy to verify the following properties:

I. Addition in V forms a commutative group. The identity element for addition is

(5.1) 0 - (0,0),

and each element F E D has the additive inverse (or negative)

-8-

(5.2) -F - -(f,f') ((-f, -f').

20. Multiplication in D forms a commutative semigroup with an identity, that is,

multiplication is commutative and associative, and

(5.3) 1 - (1,0)

is the identity element for multiplication, F-1 - 1-F - F for all F E D.

3*. Multiplication is distributive across addition,

(5.4) F(G + H) - F'G + F.H,

for all F,G,H (D.

40. There are no divisor f zeo, which means that if

(5.5) F.G - 0,

and F O 0, then G - 0.

A mathematical system with these properties is called an integral anmain (4].

Furthermore, every element P (ff,) E D such that f # 0 has the multiplicatiwe inverse

(or realprocal) 1/F given by

(5.6) 1/F = 1/(f,f') = (1/f, -f'/f
2
).

It is important that D is an integral domain because this means that the same results

will be obtained independently of the order in which equivalent sequences of arithmetic

operations are performed. Thus, for example, the example function F(X) can be evaluated by

any code list equivalent to (2.1) in real, complex, or differentiation arithmetic, and the

results will agree. The real number system I and the complex number system C do share a

-9-1 00

property which D does not have: In R and C, only the additive identity 0 does not have a

reciprocal; integral doains in which this holds are called fieb 141.

6. Functions in D. In addition to rational functions, the student of calculus is

introduced to a basic set of transcendental functions. The rules for differentiation of

these elemntary functions are based on the definition (3.1) and its consequences, such as

the chain rule, implicit differentiation, and logarithmic differentiation. Once the rule

for differentiation of a function is known, it can be used to define the corresponding

function in D. For example,

(6.1) eF = e (f f ')
- (ef, fVoef),

(6.2) In F = In (f,f') - (In f, f'/f),

(6.3) sin F sin (f,f') - (sin f, f' coe f),

(6.4) cos F cos (ff') - (cos f, - f'*sin f),

(6.5) tan
"1

F " tan
"1

(f,f'J - (tan-If, f.'1(j + f2)),

and so on. The power function is usually handled in three cases:

(6.6) FC - (f,f,)c , (fc, fl.c.fc-1),

(6.7) c? = C
(f f ')

" (c
f
, f'lIn c * cf),

(6.0) FG - (f,f)(9.9,') = (fg, f'.g.fg-1 + g'ln g * fg),

where c E a denotes a constant.

By following the pattern of the above examples, it is easy to define functions in 0

-10-

'V

which give the values of the corresponding function and its derivative in R. In general,

by the chain rule,

(6.9) u(F) - u((ff)) - (u(f), ul(f).f'),

where u: R + R is any differentiable function. The rules of automatic differentiation can

thus be extended to a wide class of functions, and in particular those differentiable

functions encountered in elementary analysis.

In Appendix A, a set of subroutines for the arithmetic operations (4.1)-(4.4) and the

elementary functions (6.1)-(6.5) are given for a typical hand-held programmable RPN

calculator, the NP-15C. A similar set of operators and the functions (6.1)-(6.5) are given

in Appendix 8 in the computer language Pascal-SC [14], which can be used on many

microcomputers.

7. The geometry of differentiation. It is natural to identify the elements F =

(f,f') of D with the points of the real plane R2 . In this geometry, constants lie on the

f-axis (W - 0), and the locus of the independent variable is the line f' - 1. A function

F: D + D can be parameterized by the real variable x by setting X - (x,1) to obtain

(7.1) F(X) - F((X,1)) - (f(x),f'(x)).

The graph of F in the f,fl-plane (the so-called phame planm) reveals some interesting facts

about the underlying real function f: R + R. Points at which the graph of F crosses the f-

axis (f' - 0) correspond to critical points of the function f, and crossings of the f'-axis

(f - 0) to zeros of f.

The function

(7.2) f(x) - x2 + 4

is represented by

-11-

I

(7.3) F(X) - N2+ 4, 2x)

in D, which is equivalent to

(7.4) f .,2 +

in the phase plane. The point F - (4,0) is critical, and in furthermore a global minimum

of f, since the entire graph of F(X) lies to the right of this point, that is, f 4, see

Figure 7.1.

fs

Locus of independent variable

f

Locus of constants

f 1 2--f + 4
4

Figure 7.1. Graph of f(x) - x 2+ 4 in the Phase Plane.

-12-

S. Symbolic differentiation revisited. Symbolic and automatic differentiation have

different goals. The purpose of symbolic differentiation in to produce a formula for the

function fl: R + R which is the derivative of the given function f: t + R, while autoAatic

differentiation gives the value f'(x) of the derivative f at some given x E R (as well as

the value f(x)). Both use the same techniques, derived from the basic definition (3.1).

It is worthwhile to note that (3.1) and the rules derived from it actually define the

value of the derivative FI(X), and not a fosmla for F'(X). The formula is obtained by

working with the rules symbolically, and using additional rules for simplificationsof the

symbolic results. With this in mind, the rules of automatic differentiation can also be

used for symbolic differentiation. To see this, evaluate the formula (1.1) by using the

code list (2.1) with I - (x,1). The results area

T1 : (x,1) - 1 - (x - 1, 1).

T2 : (x,t) + 3 - (x + 3, 1)r

T3 : (x-1,1).(x+3,1) - ((x-1)*(x+3), (x-1).1 + (x+3).1)

- (x2 + 2x - 3, 2x + 2)

(6.1) T4 :- (x,1) + 2 - (x + 2, 1)i

F(X) t- (x
2
+2x-3,2x+2)/(x+2,1)

- x2 + 2x - 3 (x + 2)-(2x + 2) - (x
2 + 2x - 3).1

x+2 (x+2)'

x 2 + 2x - 3 x
2 + 4x + 7x + 2 ' (x + 2) z)

This is the right answer, obtained by applying the rules of automatic differentiation

in symbolic form. This example illustrates the inherent difficulty of symbolic

differentiation, for example, in the calculation of T3, it has to be recognized that (x-

1)-1 + (x+3)o1 and 2x + 2 symbolize the mama quantity, and the latter form is preferable.

In the numerical calculation of T3 for x - 3, the arithmetic calculation 2.1 + 6.1 - 8

required no such simplification. Computer programs which do symbolic differentiation are

-13-

large and consequently slow compared to the small and fast subroutines required for

automatic differentiation. This is because many extra rules for algebraic simplification

must be programmed for the symbolic programs, and these are not required for simple

numerical evaluation of functions and derivatives.

9. 3xtensions of differentiation arithmetic. There are several directions in which

the differentiation arithmetic presented here for functions of one real variable can be

extended. A differentiation arithmetic can be defined for higher derivatives. In the case

of second derivatives, the basic elements are triples

(9.1) F - (ff',f"),

the independent variable is represented in the form X - (x,1,O), and constants by C -

(cO,O). Leibniz' rule is very useful for the derivation of the rules for multiplication

and division [12]. This idea can be extended to obtain derivatives of arbitrary order by

evaluation of the formula for the original function, or Taylor coefficients, since rules

are known for formation of the (n+l)-tuples

(9.2) F . (fO' fl" ".'' f
)'

for arithmetic operations and various standard functions, where

hk f(k)

(9.3) f f hf (x), k =

vith the usual conventions f(O)(x) - f(x) and Of - 1 [12].

Another extension of differentiation arithmetic is to functions of several variables,

that is, to partial derivatives. In this case,

(9.4) F (f,Vf),

-14-

.1 __-____

where Vf is the gradient vector of f, that is,

(9.5) Vf(x) - (,f(X) I af(x) f.x-

1 2 n

x - (x1x2,...,xn). The ith independent variable is represented by Xi - (xi,ei), where ei

is the ith unit vector, and constants by C - (c,O), where 0 denotes the zero vector 0 -

(0,0,...,0). The differentiation arithmetic presented in this paper is actually simply

this gradient arithmetic for the special case n - 1.

Differentiation arithmetic can be extended to higher partial derivatives and Taylor

coefficients in several variables in the same way as done for functions of a single

variable. Second partial differentiation is based on the representation

(9.6) F - (fVfUf),

where Hf denotes the Usmiam matrix

2f)

(9.7) Hf(x) - (x

of second partial derivatives of f at x.

Increasing the order of derivatives needed or the number of independent variables

quickly puts automatic differentiation out of reach of hand calculation. However, the

required rules of differentiation arithmetic are easy to program for computers (5, (12],

(13], and are well-suited to parallel computation. The results obtained have the accuracy

of symbolic differention, but are require much less computation. Furthermore,

differentiation arithmetic can be combined with other forms of arithmetic, such as interval

arithmetic, to provide information about the values of functions and their derivatives over

ranges of values of the variables 181, [9], 1121, (13].

10. A simple application of differentiation arithmetic. The use of Newton's method

to solve an equation of the form

-15-

JU

(10.1) f(x) = 0

requires values f(xn) and f'(x n) of the function and its derivative for each approximation

%n of a solution x - x* of (10.1). These values are given directly by evaluation of the

function f in differentiation arithmetic. For

(10.2) Xn - (xn,),

the use of differentiation arithmetic gives

(10.3) Fn = F(XYn - (fn' fn) - (f(xn). f'(xn))i

and thus for

(10.4) Xn+ 1 xn - fn/fA,

(10.5) Xn+= (Xn+l,).

Starting with x0 - -2.1, the results for the function (1.1) are:

X0 - 2.10000000000

F(X0) - (27.9000000000, 301.000000000),

X1 - -2.19269102990

F(X 1) - (13.3762744874, 81.7975624261),

X2 a -2.35622004092

F(X2) = (6.06554082423, 24.6420186899),

X3 = -2.60236630436

F(X3) = (2.37799195653, 9.26798946894),

-16-

x4 - -2.85894751483

F(X4) - (6.33698948666 x 10-1, 5.06619310633)

x5 - -2.98403136682

r(X5) - (6.46519385657 x 10-2 , 4.09815663218)

x6 - -2.99980722518

r(26) - (7.71210787890 x 10-4 , 4.00115698347)

x7 - -2.99999997213

r(X7) - (1.11480002330 x 10- 7 , 4.00000016722)

x8 - -3.00000000000

r(Xa) - (0.00000000000, 4.00000000000).

These results were computed using the Pascal-SC program given in Appendix C. This program

can be modified easily to applied Newton's method to functions other than (1.1).

-17-

References

1. G. Alefeld and J. Herzberger. Introduction to Interval Computations. Translated by

Jon Rokne. Academic Press, New York, 1983.

2. L. 3. Dickson. New First Course in the Theory of Equations. Wiley, New York, 1939.

3. G. Z. Forsythe and C. B. Moler. Computer Solution of Linear Algebraic Systems.

Prentice-Hall, Englewood Cliffs, N. .. , 1967.

4. Peter Henrici. Applied and Computational Complex Analysis, Vol. 1. Wiley, New York,

1974.

5. L. V. Kantorovich. On a mathematical symbolism convenient for performing machine

calculations (Russian). Doklady Akad. Nauk SSSR 113 (1957), 738-741.

6. G. Medem. Automatic differentiation of computer programs. ACM Trans. Math. Software

6 (1980), no. 2, 150-165.

7. C. C. MacDuffee. Theory of Equations. Wiley, New York, 1954.

6. R. Z. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N. J., 1966.

9. R. R. Moore. Methods and Applications of Interval Analysis. SIAM Studies in Applied

Mathematics, 2, Philadelphia, 1979.

10. L. B. Rall. Computational Solution of Nonlinear Operator Equations. Wiley, New York,

1969. Reprinted by Krieger, Huntington, N. Y., 1979.

-18-

11. L. B. Rall. Applications of software for automatic differentiation in numerical

computation. Computing, Suppl. 2 (1980), 141-156.

12. L. B. Rail. Automatic Differentiation: Techniques and Applications. Lecture Notes

in Computer Science No. 120, Springer, New York, 1981.

13. L. B. Rail. Differentiation and generation of Taylor coefficients in Pascal-SC. A

New Approach to Scientific Computation, ed. by U. W. Xulisch and w. L. Hiranker, pp. 291-

309. Academic Press, Now York, 1983.

14. L. S. Rall. An introduction to the scientific computing language Pascal-SC.

Mathematics Research Canter Technical Summary Report #2644. University of Wisconsin-

Madison, 1984.

-19-

APPENDIX A

Differentiation Arithmetic for a Typical Programmable RP Calculator

The calculator used for these examples was the HP15-C, manufactured by Hewlett-

Packard. The programaing is the same or very similar for other machines of this type.

The arithmetic subroutines calculate

(h,h') - (f,f')*(g,g'), where * E (+,-,*,/).

The sequence of keystrokes to enter F, G is f~f' +gl, followed by GSB *, where * = A for

addition, B for subtraction, C for multiplication, and D for division. The result h will

be left in X, and h' in Y. These routines use storage locations 0, 1 and 2.

Addition Subtraction Multiplication Division

f LBL A f LBL B f LBL C f LSL D

+ * 4 STO0 sTO0

STO 0 STO 0 R R+

R+ R+ STO I STO I

+ -x R

1%CL 0 RC 0 STO' x I R CL I

+ - ICL O 0-

g W gRFN x STO 2

+ RCL 0

qR

PCL I

RIL 2

9 RTN

-20-

The function subroutines calculate

u(f,f) = (U(f). u'(f)*f')

for the functions u - sqrt, exp# ln, sin, con, tan
1.

The sequence of keystrokes is ftf',

followed by GS *, whore 0 - 0 (sqrt), I (exp), .1 (in), 2 (sin), 3 (coo), 4 (tan-
1
). The

result u(f) wii be left in X, and the derivative u'(f)*fl will be left in Y. These

routines use storage location 0.

surtCP) - /r exp(p) - er ln(F)

f LSL 0 f I, 1 f BL.i

x Y x Y x
/x gex STO 0

0 S0 85 0

4x RCLO0

2 RCL0 g U

g RTH g RTM

CL 0

9 RT

si()cos(p) tantI M1

f LL 2 f LOL 3 f LUL 4

gRAD gAD gRAD

x xY x y

STO 0 STO 0 STO 0

C0 SIN g x 2

x x I

RC, 0 CHS +

81 RCL 0 4

gM U Coo RCL 0

q RMT g taf
"1

9 RTH

-21-

APPENDIX B

Pascal-SC Operators and Functions for Differentiation Arithmetic

Differentiation arithmetic is performed in Pascal-SC by use of the data type

DERIV, which is declared as follows:

TYPE DERIV - RECORD X,PRIME: REAL END;

This means that if F is a variable of type DERIV, then F.X = F(X) represents its
function value, and F.PRIME - F'(X) the value of its derivative. The independent
variable X has X.PRIME = 1, while C.PRIME = 0 for constants C.

In order to be able to mix REAL, INTEGER, and DERIV types in expressions, where
REAL and INTEGER are considered to be constants, 22 arithmetic operators are r
required. If K, R, and D denote respectively generic variables of types INTEGER,
REAL, and DERIV, then the following operators are needed:

Addition: +D, K + D, D + K, R + D, D + R, D + D;

Subtraction: -D, K - D, D - K, R - D, D - R, D - D;

Multiplication: K*D, D*K, R*D, D*R, D*D;

Division: KID, D/K, R/D, D/R, DID.

The following files contain the source code for the above operators:

Addition (DADD.OPR), subtraction (DSUB.OPR), multiplication (DMUL.OPR), d
division (DDIV.OPR).

1. ADDITION OPERATORS

OPERATOR + (A: DERIV) RES: DERIV;

BEGIN
RES :- A

END;

OPERATOR + (K: INTEGER;A: DERIV) RES: DERIV;
BEGIN
A.X : K + A.X;
RES :- A

END;

OPERATOR + (A: DERIV;K: INTEGER) RES: DERIV;
BEGIN
A.X : A.X + K;
RES : A

END;

-22-

a

OPERATOR + (R: REAL;A: DERIV) RES: DERIV;

BEGIN
A.X : R + A.X;
RES A

END;

OPERATOR + (A: DERIV;R:REAL) RES: DERIV;

BEGIN
A.X : A.X + R;
RES A

END;

OPERATOR + (A,B: DERIV) RES: DERIV;

BEGIN
A.X :- A.X + B.X;

A.PRIME :- A.PRIME + B.PRIME;
RES :- A;

END;

2. SUBTRACTION OPERATORS

OPERATOR - (A: DERIV) RES: DERIV;

BEGIN

A.X :=-A.X;

A.PRIME : -A.PRIME;
RES :* A

END;

OPERATOR - (K: INTEGER;A: DERIV) RES: DERIV;

BEGIN

A.X : K = A.X;
A.PRIME -A.PRIME;
RES :* A

END;

OPERATOR - (A: DERIV;K: INTEGER) RES: DERIV;

BEGIN

A.X : A.X - K;
RES : A

END;

OPERATOR - (R: REAL;A: DERIV) RES: DERIV;

BEGIN
A.X : R = A.X;
A.PRINE :--A.PRIME;
RES : A

END;

OPERATOR - (A: DERIV;R: REAL) RES: DERIV;

BEGIN

A.X : A.X - R;
RES : A

END;

-23-

10

OPERATOR (A,B: DERIV) RES: DERIV;
BEGIN

A.X :A.X - B.X;
A.PRIME :- A.PRIME - B.PRIME;
RES :- A

END;

3. MULTIPLICATION OPERATORS

OPERATOR *(K: INTEGER;A: DERIV) RES: DERIV;
BEGIN

A.X :K*A.X;
A.PRIME :- K*A.PRIME;
RES :=A;

END;

OPERATOR *(A: DERIV;K: INTEGER) RES: DERIV;
BEGIN
A.X :*A.X*K;
A.PRIME -- A.PRIME*K;
RES :A;

END;

OPERATOR *(R: REAL;A: DERIV) RES: DERIV;
BEGIN

A.X :R*A.X;
A.PRIME := R*A.PRIME;
RES :A;

END;

OPERATOR *(A: DERIV;R: REAL) RES: DERIV;
BEGIN
A.X :-A.X*R;
A.PRIME :- A.PRINE*R;
RES :-A

END;

OPERATOR *(A,B: DERIV) RES: DERIV;
VAR U: DERIV;

BEGIN
U.X :- A.X*B.X;
U.PRIME :- A.X*B.PRIME + A.PRIME*B.X;
RES :- U

END-,

4. DIVISION OPERATORS

OPERATOR / (K: INTEGER;A: DERIV) RES: DERIV;
VAR U: DERIV;

BEGIN
U.X s- KIA.X;
U.PRINE :-A.PRIME*U.X/A.X;
RES :U

END;

-24-

OPERATOR /(A: DERZV;1C: INTEGER) RIES: DERIV;
BEGIN

A.X -A.X/K;

A.PRINE :- A.PRINE/K;
RIES :=A

END;

OPERATOR /(R: REAL;A: DEftlY) RES: DERIV;
VAR U: DERIV;

BEGIN
U.X :- RIA.X;
U.PRIME :- -A.PRIME*U.X/A.X;
RES :U;

END;

OPERATOR /(A: DERIV;R: REAL) RIES: DERIV;
BEGIN
A.X :A.X/R;
A.PRIME :- A.PRIME/R;
RES :A

END;

OPERATOR I(A,B: DERIY) RES: DERIV;
VAR U: DERIV;

BEGIN
U.X :- A.XIB.X;
U.PRIME :- (A.PRINE - U.X*B.PRIME)/B.X;
RES :- U

END;

Functions for type DERIY have names beginning with D and source code for them is
given in the files *.FUN, where *=DSQRT, DEXP, DLN, DSIN, DCOS, DARCTAN.

1. SQUARE ROOT

FUNCTION DSQRT(A: DERIV): DERIV;
BEGIN
A.X :- SQRT(A.X);
A.PRIME :- 0.5*A.PRIME/A.X;
DSQRT :-A

END;

2. EXPONENTIAL FUNCTION (base e)

FUNCTION DEXP(A DERIV): DERIV;
BEGIN

A.X :- EXP(A.X);
A.PRIME -A.X*A.PRIME,
DEXP :A

END;

-25-

3. NATURAL LOGARITHM

FUNCTION DLN(A: DEftlY): DERIV;
VAR U: DEftly;

BEGIN
U.X :- LN(A.X);
U.PRIME :- A.PRIME/A.X;
DLN :- U

END;

4. SINE

FUNCTION DSIN(A: DERIV): DEftlY;
VAR U: DEftlY;

BEGIN
U.X :- SIN(A.X);
U.PRINE :- A.PRIME*COS(A.X);
DSIN :- U

END;

5. COSINE

FUNCTION DCOS(A: DERIV): DERIV;
VAR U: DERIV;

BEGIN
U.X 2- COS(A.X);
U.PRIXE :- -A.PRZHR*SIN(A.X);
DCOS :- U

END;

6. ARCTANGENT

FUNCTION DARCTAN(A: DERIV): DERIV;
VAR U: DERIV;

BEGIN
U.X :- ARCTAN(A.X);
U.PRINE :-A.PRIME/(1.O + A.X*A.X);
DAICTAN :-U

END;

-26-

APPENDIX C

A Pascal-SC Program for Newton's Method

PROGRAM LITTLEN(INPUT,OUTPUT);

(* This program applies Newton's method to find a zero of a function

f(x) of one variable using differentiation arithmetic. *)

TYPE DERIV = RECORD X,PRIME: REAL END;

(* If F is of type DERIV, then F.X = F(X), F.PRIME - F'(X). *)

VAR X: DERIV; (* THE INDEPENDENT VARIABLE *)
F: DERIV; (* THE DEPENDENT VARIABLE *)
K: INTEGER; (* ITERATION COUNTER *)
C: CHAR; (* CONTROL CHARACTER *)

(* INSERT THE OPERATORS AND FUNCTIONS FOR TYPE DERIV YOU NEED TO
EVALUATE YOUR FUNCTION HERE, FOR EXAMPLE: *)

$INCLUDE DADD.OPR;
$INCLUDE DSUB.OPR;
$INCLUDE DMUL.OPR;
$INCLUDE DDIV.OPR;

(* END OF DERIV OPERATORS AND FUNCTIONS; THE ONES GIVEN ABOVE ARE

ADEQUATE FOR ANY RATIONAL FUNCTION. *)

BEGIN (* PROGRAM LITTLEN *)

X.PRIME : 1.O;C :- 'R';WHILE C - 'R' DO

BEGIN (* SET INITIAL VALUES *)

K :0 0; (* SET ITERATION COUNTER TO 0 *)
WRITELN;

WRITELN('Enter initial value of X:');READ(X.X);
C :- 'I';WHILE C - 'I' DO

BEGIN (* NEWTON ITERATION *)

(* INSERT A STATEMENT OR STATEMENTS TO EVALUATE F(X) HERE,
FOR EXAMPLE: *)

F :- (X - 1)*(X + 3)/(X + 2);

(* END OF DEFINITION OF F(X) *)

-27-

WRITELN; (* OUTPUT CURRENT VALUES OF X, F(X), AND F'(X) *)
WRITELN('VALUES AT ITERATION NUMBER *,K:3,' ARE:');

WRITELN;
WRITELN(' X - ',X.X);
WRITELN(' F(X) - ',F.X)
WRITELN('F''(X) - ',F.PRIME);
WRITELN; (* END OUTPUT OF CURRENT VALUES *)

WRITELN('ENTER "I" TO ITERATE, "R" TO RESTART, "Q" TO QUiT');
READ(C,C); (* The first character read from the terminal isalways a '.*

IF C - 'I' THEN
BEGIN (* NEWTON STEP *)

X.X : X.X - F.X/F.PRIME; (* NEW VALUE OF X *)
K : K + 1 (* INCREASE ITERATION COUNTER *)

END; (* NEWTON STEP *)

END; (* NEWTON ITERATION *)

END; (* COMPUTATION WITH GIVEN INITIAL VALUES *)

END. (* PROGRAM LITTLEN *)

-28-

SECURITY CLASSIFICATION OF THIS PAGE (11110 DjaAE RntE TC

REPORT DOCUMENTATION PAGE COMPLMNG FORM

1. 11111O31Rr NUM-I)2. GOVT ACCESSION NO: S. RECIPIENT'S CATALOG NUMmER
S2688 W 1I,, '/

4. TITLE (and Subitle) $. TYPE OF REPORT S PERIOD COVERED

Summary Report - no specific
THE ARITHMETIC OF DIFFERENTIATION reporting period

4. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(q) S. CONTRACT OR GRANT UNMGER(e)

L. B. Ra 1 DAAGZ9-80-C-0041

9. PERFORMING ORGANIZATION NAME AND ADDRESS I. PROGRAM ELEMENT PROJECT. TASK
AREA & WORK UNIT NUMUERS

Mathematics Research Center, University of Work Unit Number 3 -

610 Walnut Street Wisconsin Numerical Analysis and
Madison. Wisconsin 53706 Scientific Computing
11. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE

U. S. Army Research Office May 1984
P.O. Box 12211 IS. NUMEER OF PAGES

Research Triangle Park. North Carolina 27709 28
14. MONITORING AGENCY NAME & ADORESK'II dllfeent host Coadlli Office) IS. SECURITY CLASS. (of Ihle tempot)

UNCLASSIFIED
1ie. DECLASSI ICATION/OOWN GRADING

SCHEDULE

I6. DISTRIDUTION STATEMENT (of RWe Ree)

Approved for public release; distribution unlimited.

17. DISTRINUTION STATEMENT (of S. 8abo.Wf onfod In Stok o, if iftn,,I ho Repm)

1•. SUPPLEMENTARY NOTES

It. KEY WORDS (Cnilhme on mre.ol de It noces.M ad IeltI* by block nemober)

Automatic differentiation

20. ASSTRACT (Contiue m rovese ade If aseceeo and f omIlnp by block mombr)

This report describes automatic differentiation, which is neither

symbolic nor approximate, for single functions of one real variable. The

rules of evaluation and differentiation are combined into an ordered-pair

arithmetic similar to complex arithmetic, but slightly simpler. Evaluation

of the formula for a function in this arithmetic yields both the values of

(cont.)

DO FO" 1473 EDITION O 1 NOV 0S IS OSSOL2TE USCURIN UNCLASSIFIEDl~EC'URITY CL.ASSIFICATION OF THIS PAGE (Wan~ Data No oee

ABSTRCT (cont.)

the function and its derivative, without a formula for the derivative of the

function, and without numerical approximation, since this arithmetic is based

on the well-known rules for differentiation. The properties of this

arithmetic are examined, and illustrated by simple examples. Subroutines

are given for differentiation arithmetic both on a hand-held programmable

calculator, and in the microcomputer language Pascal-SC. An application of

this arithmetic to the solution of equations by Newton's method is given,

using a Pascal-SC program.

